Adnexal Mass

Eav K Lim, DO FACOOG
Presenter Disclosure

• I have no Conflict of Interest to disclose

• I have no Financial or Scientific disclosures

• I have no Off-Label disclosures.
Learning Objectives

• Be able to differentiate adnexal masses
• Determine which are benign and which are malignant
• Understand which testing modality to use
• Be able to determine best treatment approach
• Uterine adnexa consist of ovaries, fallopian tubes, and its surrounding vascular, lymphatic and connective tissues

• Estimated that between 5-10% of women in their lifetime will undergo surgery for potential ovarian neoplasm

• Prevalence of adnexal lesions in clinically asymptomatic women has been approximately 2.5% to 8%
Clinical Approach

• Determine the etiology of the adnexal mass
• Must make sure that the condition is not emergent or poises to cause serious health issues
• Decision should be guided by
 • Age of patient
 • Reproductive status
 • Location of mass
Anatomic Location

- **Ovary**
 - Physiologic cyst
 - Benign ovarian neoplasm
 - Ovarian cancer or metastatic

- **Fallopian tube**
 - Tuboovarian abscess
 - Ectopic pregnancy
 - Hydrosalpinx
 - Fallopian tube cancer

- **Connective & surrounding tissues**
 - Paratubal or paraovarian cyst
 - Broad ligament leiomyoma
Differential Diagnosis

- Gynecologic
- Non-Gynecologic
Differential Diagnosis

• **Gynecologic**
 • **Benign**
 • Functional cyst, endometrioma, mature cystic teratoma, theca lutein cyst, luteoma of pregnancy, corpus luteal cyst, hydrosalpinx, ectopic, leiomyoma, tubo-ovarian abscess, paratubal cyst
 • **Malignant**
 • Epithelial ovarian cancer, borderline tumors, germ cell tumor, sex-stromal tumor, metastatic
 • Most common metastatic disease would be from breast or GI
Differential Diagnosis

• Non-Gynecologic
 • Benign
 • Appendiceal abscess, diverticular abscess, bladder/ureteral diverticulum, pelvic kidney, peritoneal cyst, ovarian remnant
 • Malignant
 • Appendiceal tumor, bowel tumor, metastatic (breast, lung, lymphoma), retroperitoneal sarcoma
Age Group Stratification

- Fetuses
- Children
- Adolescents
- Premenopausal
- Menopausal
Age Group Stratification

• Fetuses
 • Increase in frequency with gestational age
 • Increase in patients with underlying diabetes mellitus, preeclampsia, rhesus isoimmunization

• Newborn
 • Most likely physiological that is due to circulating maternal hormones in utero

• Differentials
 • Genitourinary: reproductive tract anomalies, urinary tract obstruction, urachal cyst
 • Gastrointestinal: mesenteric/omental cyst, volvulus, colonic atresia, intestinal duplication,
 • Others: Choledochal, splenic, or pancreatic cyst, lymphangioma
• Children
 • Physiologic cyst are uncommon due to decrease in gonadotropin ovarian stimulating hormones
 • If present, most simple cysts are due to enlarging cystic follicle

• Adolescent
 • Develops complex and simple cyst
 • Most simple cysts are due to failure of maturing follicle to ovulate and involute
 • Ovarian neoplasms (benign & malignant) accounts for 1% of all tumors in children and adolescent
 • Less than 5% of ovarian cancer occurs in this age group
• In women <25 years old, ovarian malignancy would be the most common gynecologic malignancy

• Germ cell tumors would be the most common, comprising of approximately one-half to two-thirds of ovarian neoplasm up to 18 years old as compared to adult women which would be approximately one-fifth

• In girls <9 years old, approximately 80% of ovarian neoplasms are malignant

• Epithelial ovarian cancers are rare in the prepubertal age group
• Premenopausal women
 • Adnexal masses are stimulated by hormones specific in this age group
 • Ovarian or tubal malignancies are uncommon, however, germ cell tumors would be the most common with peak age between 10 and 30
• Functional/corpus luteal cyst
 • Arise when rupture does not occur and the follicle continues to grow
 • Can become hemorrhagic
 • Typically resolves on its own
 • Can cause complications associated with torsion, hemorrhage, or pain

• Polycystic ovaries
 • Enlarged ovaries with multiple small follicular cysts
 • Rotterdam criteria

• Theca lutein cysts
 • Luteinized follicle cysts as a result of hyperstimulation from elevated hCG or increase sensitivity
 • Bilateral, multiseptated in women with GTD, multiple gestation, ovarian hyperstimulation or pregnancy complicated by fetal hydrops
 • Most are asymptomatic, but can cause maternal virilization, hyperemesis gravidarum, preeclampsia, or thyroid dysfunction
• Ectopic Pregnancy
 • Seen as an adnexal mass on ultrasound

• Corpus Luteum of pregnancy
 • Associated with early intrauterine pregnancy

• Luteoma
 • Non-neoplastic ovarian mass associated with pregnancy
 • Solid component
 • Resolves spontaneously after delivery
 • Should be suspected in the presence of solid adnexal mass, maternal hirsutism or virilization
Premenopausal

- Stimulated by reproductive hormones
 - Endometrioma
 - Related with endometriosis
 - First described by Karl Freiherr Von Rokitansky 1860
 - Original theories: Meyer, Novak, Halban, Sampson
 - Histopathology with endometrial glands and stroma along with hemosiderin macrophages
 - Ultrasound: “ground glass” internal echos
 - Leiomyoma
 - Benign neoplasm of smooth muscle origin
 - Usually arises from uterus
 - Can arise from broad ligament
• Infectious/Inflammatory
 • Tubo-ovarian abscess
 • Results from upper genital tract infection
 • Fever
 • Abdomino-pelvic pain
 • Purulent cervical discharge
 • Palpable mass
 • Cervical motion tenderness

• Hydrosalpinx/pyosalpinx
 • Untreated or undertreated of PID resulting in scarring
 • Collection of tubal secretion or pus
 • Contribute to infertility
Premenopausal

• Benign neoplasm
 • Serous or mucinous cystadenoma
 • Most common benign ovarian neoplasm
 • Thin-walled
 • Uni or multilocular
 • Ranges from 5 to 20cm
 • Mucinous
 • Less common
 • Multiloculated
 • Large size
 • 5% bilateral
 • Collects mucin in their cytoplasm
 • Resembles endocervical or GI epithelium
 • Serous
 • More common
 • 20 to 25% bilateral
 • Similar to fallopian tube lining
• Benign neoplasm
 • Mature cystic teratoma
 • Common in 2nd to 3rd decade of life
 • Cell layers from ectoderm, endoderm, mesoderm
 • US: complex mass, hyperechoic contents, fluid, areas of acoustic shadowing
 • Bilateral in 10 to 15% of patients
 • Endosalpingiosis
 • Non-neoplastic ectopic cystic glands outside of the fallopian tube that are lined with fallopian type ciliated epithelium
 • Paraovarian/paratubal cyst
 • Originate from remnants of paramesonephric or mesonephric ducts
 • Hydatid cyst of morgagni are most common
 • No data to suggest these cyst are malignant or its prevalence
 • Key to diagnosis is noted a simple cyst located next to the ovary on ultrasound
Premenopausal

• Malignant adnexal mass
 • Incidence ranges from 6 to 11%
 • Mostly derived from epithelial cells, but can arise from germ cell, sex-stromal and mixed
 • Can be non-gynecologic metastatic cancer
 • Krukenberg tumor
Menopausal

- Most adnexal cyst are benign
- However, up to 30% can be malignant in patients over the age of 50
 - Malignancy can be gynecologic origin such as endometrium or metastatic from breast or GI
- Can have similar etiologies of adnexal cyst for premenopausal women
- Simple cysts are common and are from persistent physiologic/functional cyst
- Characteristic for benign versus malignant is similar to those of premenopausal, however one must have a lower threshold for suspicion
• Neoplasms
 • Includes Epithelial (75%), Sex-stromal (15%), and Germ cell (10%)
 • Epithelial carcinoma is most common histological type in this age group and encompasses approximately 90% of ovarian, peritoneal, and tubal carcinoma
 • It has been proposed that origin of high grade serous tumors may originate from fallopian tube precursors
 • Average age is approximately 60 years old
 • Include vague GI symptoms: dyspepsia, early satiety, anorexia, constipation, and bloating
Menopausal

- Epithelial
 - High grade serous carcinoma (70-80%)
 - Endometrioid (10%)
 - Clear cell (10%)
 - Mucinous (3%)
 - Low grade serous carcinoma (5%)

- Sex-stromal: often produces estrogen/androgen
 - Granulosa cell
 - Fibroma
 - Thecoma
 - Sertoli-Leydig

- Germ cell
 - Dysgerminoma
 - Endodermal sinus tumor
 - Immature teratoma
 - Gonadoblastoma
 - Choriocarcinoma
 - Seminoma
 - Embryonal carcinoma
• Regardless of age group, can always be malignant
• Might be signs of metastatic disease
• Must rule out ectopic pregnancy as it can affect fertility and be life-threatening
• Can rupture
• Causes torsion which can result in diminishing blood supply to the ovary
• Hemorrhagic cyst can cause bleeding
• Do I need to remove it?
• Am I dealing with potential cancer?
• Is the patient stable?
• Are there conservative alternatives?
• What tests do I have to order that will assist me in making my decision?
• Do I need a referral?
• Need diagnostic tests which has higher sensitivity and specificity that will enable us to make better decisions

• What will guide most of us?
 • History
 • Physical
 • Imaging
 • Laboratory tests

• Most common imaging a gynecologist will use is an ultrasound

• Most common laboratory test order to differentiate variety of benign conditions versus malignant ones are tumor markers
• Goal of an ultrasound is not to determine 100% whether or not a mass is benign or malignant
• The purpose of the ultrasound is to guide our decision making
• Fortunately, ultrasound is a highly effective, cheap, and safe tool to use
• adsfs
Ultrasound

• Sonogram techniques
 • Gray scale
 • Based on signal intensity and depth measured it length of time it require for wave to be reflected back
 • Doppler
 • Change in frequency that results from sound wave being reflected off moving objects, i.e. blood vessel
 • Combined gray scale & doppler
 • Prefered method
• 3-D techniques
 • Does not improve detection between benign and malignant process
 • May assist with detection of hydrosalpinx
• Spectral doppler
 • Too broad of overlap in resistive index and pulsatility index between benign and malignant masses
 • Velocity and diastolic notch measurements does not appear to improve reliability
• Consulsion: stay simple, go with gray scale and color doppler
Steps in characterizing a mass

- Is it a simple cyst?
 - Anechoic fluid filled cavity
 - Thin walls
 - No impaired sound wave

- Are there other physiological process that can be a cause if the cyst does not appear simple?
 - Corpus luteum
 - Thickened wall
 - Circumferential color doppler flow
 - Small central lucency that could be confusing
 - Multiple simple cyst
 - Misdiagnosed as having septation
 - Hemorrhagic cyst
 - Can have septation and mural nodules
 - Usually have thin linear echos (fishnet or reticular pattern)
 - Linear echos do not extend completely uninterrupted
Ultrasound

Are there characteristics that are specific to other “entities”?

- **Endometrioma**
 - Homogeneous low to medium echos
 - Can have solid components and be either unilocular or multilocular
 - Can have doppler flow especially if foci of endometrial tissue
 - Have similar findings of hemorrhagic cyst

- **Mature teratoma**
 - Markedly hyperechoic nodule within the mass
 - Contain fluid, Calcification with usually no color flow

- **Pedunculated leiomyoma**
 - Heterogeneous, hypoechoic, solid masses

- **Hydrosalpinx**
 - Tubular structure with septation or nodules in the wall

- **Peritoneal inclusion cyst**
 - Can have septated features around the ovary in women with adhesions
 - Adhesions can be seen as bands of tissue with surrounding fluid

- **Malignancy**
 - Solid component, not hyperechoic, has nodularity or papillary
 - Septations thicker than 2-3mm
 - Color doppler flow in the solid component
 - Presences of ascites
 - Peritoneal masses, enlarged nodes or matted bowels
 - Size of the mass does not clearly define malignancy
International Ovarian Tumor Analysis (IOTA)

- Largest diagnostic accuracy study
- Ultrasound performance determine on the level of “risk of malignancy”
- 4848 patients from oncology and non-oncology centers
- Diagnostic criteria based on “Simple rules”
- 23% had low risk (<1%)
 - Sensitivity 99.7%, specificity 33.7%,
 - PPV 44.8%, NPV 98.9%
- 48% had high risk (>30%)
 - Sensitivity 89%, specificity 84.7%
 - PPV 75.4%, NPV 93.9%
Ultrasound

- From IOTA study
- Simple rules
 - Benign features
 - Unilocular cyst of any size
 - Solid components either not present or <7mm
 - Presence of acoustic shadowing
 - Smooth multilocular cyst <10cm
 - No blood flow
 - Malignant features
 - Irregular solid tumor
 - Ascites
 - At least four papillary structures
 - Irregular solid-multilocular tumor, largest >10cm
 - Very strong color doppler flow
• If still inconclusive, what other options are available?
 • Repeat ultrasound
 • Only if there is suspicion that process could be physiological process
 • Try to obtain ultrasound in follicular phase, around day 7-12 to reduce risk of hemorrhagic cyst in the next cycle
 • Difficulties due to irregular cycle
 • MRI
 • Can be good modality if surgical treatment is to be considered
 • Irrelevant for determining benign versus malignant adnexal mass if surgical intervention would be carried out by a gynecologic surgeon experience in dealing with malignancy
 • Rely on laboratory results
 • Referral to gynecology oncologist
Serum Markers

• Biomarker: a characteristic that is objectively measured and evaluated as an indicator of normal processes, pathological processes, or response to intervention

• Tumor marker: specific biomarker for malignancy

• When dealing with adnexal masses and concern for malignancies, Epithelial ovarian cancer (EOC) is the most common and most concerning

• There are no markers developed for the purpose of evaluating benign processes, though certain benign processes can cause elevation in tumor markers more specific for malignancies

• There are numerous markers for different types of adnexal malignancies, most common, ovarian.

• CA125, CA19-9, CEA, Inhibin, AFP, betaHCG, LDH, etc.
Serum Markers

• Evaluate most commonly used marker: CA125
 • First described in 1983
 • Large transmembrane glycoprotein derived from both coelomic and mullerian epithelia
 • Coelomic: pericardium, pleura, peritoneum
 • Mullerian: Fallopian tube, endometrium, endocervical
 • Approved by FDA to monitor response to therapy in women with known EOC
 • Two types: CA125 and CA125 II, different cut off values
 • No current data available to support superiority of one versus the other
 • CA125 can be elevated in other non-malignant conditions
 • Not overly useful in premenopausal patients unless “significantly” elevated
 • Usually, a cut-off of 200 u/ml for premenopausal patients is used
 • CA125 and CA125 II cut-off for menopausal: 35 u/ml and 20 u/ml
Serum Markers

• Human epididymis protein 4
 • Antigen derived from human epididymis protein, a product of the WFDC2 gene that is overexpressed in patients with serous or endometrioid ovarian carcinoma
 • FDA approved in 2008 for monitoring recurrent or progressive disease in patients with EOC
 • HE4 < 150 pM
 • Used in conjunction with ROMA

• Carcinoembryonic antigen
 • Protein found in embryonic or fetal tissue (disappear after birth)
 • Mucinous cancer of GI tract or ovary
 • Can be elevated in breast, pancreatic, thyroid, lung cancers
 • Benign conditions include: cigarette smoking, mucinous cystadenoma of ovary or appendix, cholecystitis, liver cirrhosis, diverticulitis, IBD, pancreatitis, pulmonary infections
 • Can be used to monitor patients with pseudomyxoma peritonei
Serum Markers

- CA19-9
 - Mucin protein marker
 - Elevated in mucinous ovarian tumors
 - Monitor response to therapy or recurrence in patients with gastric, pancreatic, gallbladder cancer, cholangiocarcinoma, and adenocarcinoma of the ampulla of Vater

- OVA1 (Quest diagnostics)
 - Includes 5 serum markers
 - FDA approved in 2009 to assess likelihood of malignancy in patient undergoing surgery for an adnexal mass
 - CA125 II, Beta 2 macroglobulin, transferrin, transthyretin, apolipoprotein A1
 - Premenopausal
 - Low probability of malignancy: < 5
 - High probability of malignancy: > 5
 - Postmenopausal
 - Low probability of malignancy: < 4.4
 - High probability of malignancy: > 4.4
 - Triglyceride levels exceeding 4.5g/L or rheumatoid factor > 250 IU/ml may interfere
• Risk of malignancy algorithm (ROMA)
 • FDA approved in 2011 to assess women for planned surgery to detect risk of malignancy
 • Uses CA125 and HE4 through an algorithm depending on menopausal status
 • Premenopausal: high risk > 13.1%
 • Postmenopausal: high risk > 27.7%
 • Available internationally on websites and smartphone applications

• Risk of malignancy index (RMI I-IV)
 • Originally developed in 1990
 • Use primarily in UK
 • Combines CA125, pelvic ultrasound (U), and menopausal status (M)
 • RMI I = U x M x CA125, if score is >200, should refer to specialist
 • Ultrasound: multi-locular, solid areas, metastasis, ascites, bilateral masses
 • Size <7cm or >7cm
• ADNEX model
 • Designed for use in women with adnexal mass planning for surgery
 • First reported in 2014
 • Predict not only about malignancy versus benign, but also borderline, stage I-IV, and secondary metastatic adnexal tumors
 • Has not been validated outside of European research collaborative group
 • Computerized model that combines different characteristic
 • Age
 • CA125
 • Type of center
 • Ultrasound features: maximum diameter of lesion, proportion of solid tissue, >10 cyst locules, number of papillary projections, acoustic shadows, ascites

• www.iotagroup.org/adnexmodel/
• Diagnostic performance
 • CA125
 • Alone has low sensitivity and specificity, especially for early stage ovarian cancer with sensitivity of 25% and specificity of 61%
 • Meta-analysis of 77 studies with value >35 U/mL had a sensitivity and specificity of 78%, low values secondary to other types of ovarian malignancy that does not have elevated CA125, i.e. mucinous, clear cell, mix mullerian ovarian tumors
 • Premenopausal: Sensitivity 50-74%, specificity 69-78%, due to benign causes of CA125 elevation
 • Postmenopausal: Sensitivity 69-87%, specificity 81-93%
 • OVA1
 • Prospective series with 524 women, compared OVA1 with CA125 II and clinical assessment
 • OVA1 sensitivity 93% and specificity 43%, CA125 sensitivity 69% and specificity 84%, clinical assessment sensitivity 75% and specificity 79%
 • With menopausal status: Higher sensitivity with OVA1 100% versus CA125 92%
 • Higher sensitivity in OVA1 versus CA125 in Stage I and II primary ovarian cancer
 • Improved diagnostic tool compared to CA125 alone
• Diagnostic Performance

 • ROMA

 • Prospective multi-institutional study of 531 patients
 • High risk patient (Incidence of malignancy 24%)
 • Post menopausal: Sensitivity 92%
 • Premenopausal: Sensitivity 76%

 • Prospective multi-institutional study of 472 patients
 • Low risk patients (Incidence of malignancy 10%)
 • Postmenopausal: Sensitivity 92% and specificity 76%
 • Premenopausal: sensitivity 100% and specificity 74%

 • ROMA versus HE4 versus CA125
 • ROMA was most sensitive (86%: 80%: 84%)
 • HE4 was most specific (84%: 94%: 78%)
 • Results however are not statistically significant
• Diagnostic performance

 • RMI
 • Similar sensitivity and specificity among RMI I through IV
 • Advantages over serum biomarkers is that it combines most important clinical elements in predicting malignancy
 • Disadvantage is that the risk calculator uses absolute CA125 level instead of a scoring system. Patients with early stage cancer can often have low CA125 and be misleading

 • ADNEX model
 • No validation study available at this time
• Conclusion:
 • Not all adnexal masses are malignant
 • Tumor markers and ultrasounds are to guide us in differentiating between benign and malignant with a certain level of confidence
 • CA125 is NOT used as a cancer screening
 • OVA1 & ROMA are additional tools which are available to aide in deciding benign versus malignant. They should be used in patients that are already undergoing planned surgery
 • When in doubt, ask a colleague
Thank You!